Requirements Interdisciplinary Engineering

Foundation Subjects for Major(Required)

Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ20004	Linear Algebra I	4	3. 0	1	FallABC	Wed4, 5	3A213	Tong Xiao-Min	This course introduces the basic ideas of vector, matrix and their operations and how to solve linear equations using matrices and vectors. The primary goal of this course is to understand the systems of linear equations, classifications of matrices and their applications. Although most of the problems can be solved without Mathematica, you are encouraged to solve the homework using the software once you know how to solve the problems. The course is a prerequisite for "Linear Algebra II"	Lecture is conducted in English. face-to- face(partially online) Online(Synchronous), and the recorded materials are available to the students who cannot attend the class synchronously.
FJ20014	Linear Algebra II	4	3.0	1	Spr ABC	Wed4, 5	3A213	Sharmin Sonia	Following "Linear Algebra I"', "Linear Algebra II" will also concentrate on the basics of linear algebra. Emphasis will be given to topics that will be useful in other disciplines, such as determinants, eigenvalues, positive definite matrices, Fourier series and the Fast Fourier Transform. Some homework problems may require you to use a program such as MATLAB or Mathematica, an important tool for numerical linear algebra. No previous programming experience is required.	Lecture is conducted in English. face-to- face(partially online) (i.e. Face-to- Face+Online (Asynchronous))
FJ20124	Introduction to Single-Variable Calculus I	4	2.0	1	FallA	Tue1, 2, Thu5, 6	3A405	JUNG Mincherl	This course along with the subsequent courses "Introduction to Single-Variable Calculus II" and "Advanced Calculus" introduces the basic tools of calculus and develops their technical competence. The primary goal of this course is to understand the concepts and to build up a working ability of various mathematical manipulations such as derivatives and integrals. This is efficiently achieved by visualization, numerical and graphical experimentations and, thus, students are required to be acquainted with Mathematica (or similar onces) during the course for working excrises and homework problems. The present course provides a basic core and practical knowledge required for many courses in both natural and social sciences.	Lecture is conducted in English. face-to-face. interdepartmental course face-to-face, Synchronous and Asynchronous, Take- home exam
FJ20134	Introduction to Single-Variable Calculus II	4	2. 0	1	FaliBC	Tue1, 2	3A405	WANG JUNHAO	This course along with "Introduction to Single- Variable Calculus I" and "Advanced Calculus" introduces the basic tools of calculus and develops their technical competence. The primary goal of this course is to understand the concepts and to build up a working ability of various mathematical manipulations such as parametric equations, polar coordinates, infinite sequences and series. This is efficiently achieved by visualization, numerical and graphical experimentations and students are required to be acquainted with Mathematica (or similar ones) during the course for working exercises and homework problems. The present course provides a basic core and practical knowledge required for many courses in both natural and social sciences.	Lecture is conducted in English. face-to-face. interdepartmental course face-to-face, Synchronous and Asynchronous, Take- home exam

Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ20144	Advanced Calculus	4	4.0	year 1	SprA SprABC	Tue5, 6 Thu4, 5	3B303	Sano Nobuyuki	Following "Introduction to Single-Variable Calculus I & II." this course introduces the basic tools of calculus and develops their technical competence, namely, differential equations, infinite series, vector calculus, curvilinear coordinate systems, and partial derivatives, etc. This is achieved by visualization, numerical and graphical experimentations and, thus, students are required to be acquainted with Mathematica (or similar ones) during the course as working exercises and homework problems. This course as well as "Introduction to Single-Variable Calculus I & II" provides a core and practical knowledge required for many courses in both natural and social sciences.	Lecture is conducted in English. face-to-face face-to-face, Synchronous and Asynchronous, Take- home exam
FJ20201	Probability and Statistics	1	2.0	1	FallAB FallC	Thu2 Thu1, 2	3A405	Islam Monirul Muhammad	This course introduces basics of probability theory and statistics. This course will be mainly oriented to interpret physical problems in engineering and natural sciences through application of probability theory and statistics. Evaluation will be done through class quiz, homework on regular basis, and final examinations.	Lecture is conducted in English. face-to-face. interdepartmental course face-to-face, Online (Asynchronous) and Online (Synchronous)
FJ22004	Electromagnetism I	4	3. 0	2	FallABC	Wed2, 3	3A311	Yoshida Shoji	This course introduces the classical theory of electromagnetism at an undergraduate level. It begins with the fundamental laws and relations governing electrostatic force, electric field and electric potential. These quantities are calculated based on a given system of charges or a given charge distribution. The course also continues with work and energy in electrostatics, electric fields in matter (the concepts of polarization and linear dielectrics), as well as electric fields due to polarized objects.	Lecture is conducted in English. face-to- face(partially online) face to face and some meetings online.recording the face-to-face classes, in case there are any students who are unable to be physically present.
FJ22014	Electromagnetism II	4	3. 0	2	SprABC	Tue1, 2	3A311	JUNG Mincherl	This lecture starts from magnetostatics and compares with those properties of electrostatics. The electromagnetic induction is then revealed from the time- dependent variation of electric or magnetic field. All the principles of electric and magnetic fields are summarized in Maxwell's equations. Electromagnetic (EM) waves are finally presented to discuss the EM properties of dielectrics and metals.	Lecture is conducted in English. Only for IDE students. face-to- face
FJ25101	Electrical Circuit	1	2. 0	2	FallAB	Tue5, 6	3B302	Nguyen Triet Van	A lecture is given on basic knowledge and analysis methods of electrical and electronic circuits, including linear passive elements, sinusoidal alternating current and complex number, impedance and admittance, resonant circuits, mutual induction circuits, bridge circuits, filters, general circuit theorems, and AC power.	英語で授業 Lecture is conducted in English. face-to-face
FJ26004	Mechanics I	4	2. 0	1	FallAB	Mon5, 6	3A212	Matsuda Akihiro	Primary goals of Mechanics I is to develop students' ability to (i) analyze problems in a simple and logical manner and (ii) apply basic principles to find their solutions. This course reviews such fundamental concepts as coordinate, time, mass, force and energy for a particle. The students are required to solve exercises and work on homework assignments.	Lecture is conducted in English. face-to-face
FJ26014	Mechanics II	4	2. 0	1	SprAB	Fri5,6	3A212	Dairaku Koji	Following "Mechanics I", "Mechanics II" will just concentrate on the basics of mechanics. Emphasis will be given to topics that will be useful in other disciplines, such as systems of particles, kinematics and plane motion of rigid bodies and principles about analytical vector mechanics.	Lecture is conducted in English. face-to-face

Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on	Term	Meeting Days, Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ26104	Thermodynamics I	4	2.0	year 2	FallAB	Tue3, 4	3A213	SHEN Biao	Thermodynamics is one of the essential physics to discuss energy conservation for engineer in various fields. The aim of this lecture is to master the basics of the first and second laws of thermodynamics. The specific goal is to be able to appropriately express the first law of thermodynamics for the system, to be able to discuss changes in entropy based on the second law of thermodynamics, and to combine these basic matters. The heat efficiency of the heat engine can be derived.	英語で授業 Lecture is conducted in English. face-to-face
FJ26114	Thermodynamics II	4	1.0	2	SprAB	Fri4	3B303	Kaneko Akiko	Thermodynamics is one of the essential physics to discuss energy conservation for engineers in various fields. Based on the first and second laws of thermodynamics learned in "Thermodynamics I", we learn free energy and chemical potential as new state quantities, and advanced matters of thermodynamics such as Maxwell relations and phase changes. The aim is to be able to understand these matters based on the major principles of the first law and the second law, and to cultivate the ability to reconstruct the learned matters from a new perspective by using them as tools.	英語で授業 Lecture is conducted in English. face-to-face
FJ27004	Programming I	4	2.0	1	SprAB	Fri1, 2	3L201, 3L206, 3L207, 3L504	Utsuro Takehito,Hoshino Kiyoshi,Hoshino Junichi,Hachisu Taku	This course, introduction to programming, is focused on the first steps in C language. Topics that will be covered include fundamentals of programming languages applicable to general engineering systems. They include C-Language (fundamental operations, standard input-output functions), control statements (branching and jumps, if-statement, looping, while- and for-statements), fundamental data types, basics of making and using functions, storage classes and functions, arrays, character strings, and multidimensional array.	英語で授業 Lecture is conducted in English. Only for IDE students. Online(Asynchronous)
FJ27014	Programming II	4	1.0	1	SprC	Fri1,2	3L201, 3L504	Kitahara Itaru, Hachisu Taku	[Objective] Develop the ability to process information well using computers. [Overview] Learn the basics of programming in C-language. [Topics] Memory space (scoping), Memory address (pointer variable), Function, File 1/0, Structure, Linked list, Sorting.	英語で授業 Lecture is conducted in English. Only for IDE students. Online(Asynchronous)
FJ27024	Programming III	4	2. 0	2	FallAB	Fri1,2	3A311	Maruyama Tsutomu, Hashimot o Yuki, Hassan Modar	Introduction to algorithm, data structure and computational complexity: Writing C program: Programming techniques	Lecture is conducted in English. Only for IDE students. Online(Asynchronous) face-to-face and Online(Asynchronous)
FJ27034	Programming IV	4	1.0	2	FallC	Thu1, 2	3A311	Kameda Yoshinari	After Programming I - III, Learn C programming skill by coding basic computer graphics programs.	Lecture is conducted in English. Only for IDE students. face-to- face Details will be announced on manaba.
FJ28003	Fundamental Labs I	3	2.0	2	FallABC	Mon3-5		Tsuyoshi,Hashimo	Fundamental labs for the basics of Engineering Systems. The labs consist of 6 themes. Each theme will be concluded in 2 weeks (2 weeks x 6 thems = 12 weeks). The 6 thems are as follows: 1. System control engineering basic students' labs, 2. Basics of linear systems using operational amplifiers, 3. Diodes and transistors, 4. Basics of logic circuits and computers, 5. DC motor manufacturing and control, and 6. Mechanisms and mechanical elements.	Only for IDE students. face-to- face Lecture is conducted in English and by face-to-face. Only for IDE students.

	Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year		Meeting Days, Per iod etc.	Classro om	Instructor	Course Overview	Remarks
F	J28013	Fundamental Labs II	3	2.0	2	SprABC	Mon3-5	3A207	Ohno Yuzou, Makimura Tetsuya, Isobe		Lecture is conducted in English. Only for IDE students. face-to- face

Major Subjects(Required)

	bjeees (Required)	T.				1				
Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ10001	Complex Analysis	1	3. 0	2	FallABC	Tue1, 2	3A408	TRAORE ABOULAYE	This course introduces theories for functions of a complex variable. Students will acquire skill to use complex derivatives function, to have knowledge about integration in the complex plane, use of Cauchy integral theorem, power series, to evaluate complicated real integrals via residue calculus, etc.	Lecture is conducted in English. face-to-face
FJ10101	Applied Mathematics	1	3. 0	2	SprABC	Tue3, 4	3A407	Islam Monirul Muhammad	Applied mathematics will focus on the applications of mathematics in the field of engineering and physics. Students in this course will acquire problem-solving skills using applied knowledge in mathematics in vector analysis, complex variables, group theory, partial differential equation, Fourier series, Fourie and Laplace transforms.	Lecture is conducted in English. face-to-face
FJ11001	Engineering Ethics	1	1. 0	4	FallAB	Wed1	3A212	Kakeya Hideki	This course discusses historical examples and up-to-date issues related to engineering ethics. In the first half of the course, we mainly deal with preparedness, mitigation, and response for catastrophic disasters such as earthquakes and tsunami from an engineering point of view. In the second half, we mainly deal with genetic engineering technologies that can cause worldwide pandemic, such as gain-of-function research that artificially enhances transmissibility and pathogenicity of pathogens like bacteria and viruses.	Lecture is conducted in English. face-to-face
FJ11101	Introduction to Interdisciplinary Engineering I	1	1. 0	1	FallAB	Tue5	3A213	Matsushima Takashi, Yamamoto Kyosuke, Tezuka Taro, Matsuda Akihiro, Date Hisashi, Kameda Toshihiro, Kaneko Akiko, Takewaka Satoshi, Izawa Jun, Aki Hirohisa	This course discusses issues relevant to Engineering Systems and aims to help students grasp general concepts involved in this field of study.	Lecture is conducted in English. face-to- face(partially online). interdepartmental course
FJ11111	Introduction to Interdisciplinary Engineering II	1	1.0	1	SprAB	Tue1	3A212	Matsuishi Kiyoto	This course discusses issues relevant to Engineering Sciences and aims to help students grasp general concepts involved in this field of study.	英語で授業 Lecture is conducted in English. face-to-face. interdepartmental course
FJ12001	Modern Physics	1	3.0	2	SprABC	Thu1, 2	3B204	Sellaiyan Selvakumar	The course will focus about overview of modern physics aiming at Engineering students. Students in this course will have introductory concept about wave-particle properties of electromagnetic radiation, quantum mechanics, properties of atom, molecular structure, statistical physics, and solid state physics.	英語で授業 Lecture is conducted in English. face-to-face

	1					1	1		1	
Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ15001	System Modeling	1	2. 0	2	SprAB	Fri5,6	3A311	Nguyen Triet Van	This course introduces fundamental concepts and techniques in building linear, time- invariant, state-space models of typical engineering systems, including translational and rotational mechanical systems, electrical and electronic circuits, thermal systems, fluid systems, and transductors. Analogies are drawn among these systems in different energy domains based on such concept as the across and the through variables, as well as their energy storages and dissipaters. Response characteristics of standard first and second-order systems are explained, as a prelude to control system designs.	英語で授業 Lecture is conducted in English. face-to-face
FJ15101	Electronic Circuits	1	2. 0	2	SprAB	Wed3, 4	3A305	Maeda Yuka, Hassan Modar	Following "Electrical Circuits", this course introduces the fundamentals of electronic circuits, their components, and their analysis. Topics covered are: circuit abstraction method, two terminal elements, Kirchhoff laws, circuit analysis methods, digital abstraction, MOSFET switch, MOSFET amplifier, energy storage elements, operational amplifiers circuit and analysis, and diodes and semiconductors.	英語で授業 Lecture is conducted in English. face-to-face
FJ18003	Advanced Labs I	3	2. 0	3	FallABC	Mon3-5	3B311	Matsuishi Kiyoto, Takahashi Miwako, Sakurai Takeaki, Suemasu Takashi, Hasunuma Ryu, Goto Hiromasa, TRAORE ABOULAYE	of MOS capacitorsand, iv) Optoelectronics,	英語で授業 Lecture is conducted in English. Only for IDE students. face-to- face
FJ18013	Advanced Labs II	3	2. 0	3	SprABC	Tue3–5	3B305	Yano Hiroaki,Matsuda Tetsuya,Maeda Yuka,Kawai Shin,Nishio Mayuko,Morita Naoki,Kanagawa Tetsuya,Kaneko Akiko	We will deepen our understanding of Engineering Systems. The labs consist of 4 themes. Each theme will be concluded in 2 or 4 weeks (4 weeks x 2 themes + 2 weeks x 2 themes = 12 weeks). The 4 themes are as follows: 1. Control System design (4 wk.), 2. Sensors and analog signal processing (4 wk.), 3. Vibration of structures (2 wk.), and 4. Boiling heat transfer (2 wk.).	英語で授業 Lecture is conducted in English. Only for IDE students. face-to- face
FJ19003	Interdisciplinary Engineering PBL I	3	6.0	3	FallABC	by appoint ment		Shiraki Kentaro,Yano Hiroaki	Project-based learning opportunities are provided. The students must choose two different laboratories from the field of Engineering Science and Engineering Systems, respectively. Under the laboratory academic advisor's supervision, the students are expected to acquire the specialized knowledge necessary for research through basic study.	Lecture is conducted in English. Only for IDE students. face-to- face(partially online) (PBL style will be advised by each academic advisor)
FJ19013	Interdisciplinary Engineering PBL II	3	6.0	3	SprABC	by appoint ment		Shiraki Kentaro,Yano Hiroaki	Project-based learning opportunities are provided. The students continue to pursue their studies under the supervision of the laboratory academic advisors chosen in PBL 1. The students are expected to complete the research proposals for the full-scale research pursued in PBL III and PBL IV.	Lecture is conducted in English. Only for IDE students. face-to- face(partially online)
FJ19023	Interdisciplinary Engineering PBL III	3	6.0	4	FallABC	by appoint ment		Shiraki Kentaro,Yano Hiroaki	Project-based learning opportunities are provided. The students carry out research- based studies based on the research proposals planned for each lab chosen in PBL 1 and PBL II under the supervision of the laboratory academic advisors. With exceptional cases, students may choose one of the two labs in PBL I and PBL II and focus on the research theme of the chosen lab.	Lecture is conducted in English. Only for IDE students. face-to- face(partially online)

Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ19033	Interdisciplinary Engineering PBL IV	3	6.0	4	SprABC	by appoint ment		Shiraki Kentaro,Yano Hiroaki		Not open in 2022. Lecture is conducted in English. Only for IDE students. face-to- face(partially online)
FJ19043	Interdisciplinary Engineering PBL IV	3	6. 0	4	FallABC	by appoint ment		Shiraki Kentaro, Yano Hiroaki	Project-based learning opportunities are provided. The students continue to carry out research-based studies at two labs under the supervision of the laboratory academic advisors. Students are expected to complete their undergraduate research theses on each theme. The students who are allowed to focus on one research theme are required, in addition to their undergraduate research thesis, to submit at least one refereed paper that must be accepted before completing PBL IV.	

Major Su	bjects(Core Electives)		-				1	T	1	
Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
EG02211	Chemistry I	1	1.0	1	FallA	Tue/Fri 6	2D206	Kang Seung Won	Introduction to general chemistry for life and environmental sciences.	Lecture is conducted in English. face-to-face
EG02221	Chemistry II	1	1.0	1	FallB	Tue/Fri 6	2D206	Kang Seung Won	Introduction to general chemistry for life and environmental sciences.	Lecture is conducted in English. face-to-face
EG02231	Chemistry III	1	1.0	1	FallC	Tue5, Th u6	2D205	Kang Seung Won	Introduction to general chemistry for life and environmental sciences.	Lecture is conducted in English. face-to-face
FJ12101	Statistical Physics I	1	1.0	3	FallAB	Wed5	3A407	Sano Nobuyuki	Statistical Physics as well as Quantum Mechanics provides the most important backbone of modern physics. In the present course, the basic principles of statistical mechanics are explained. After reviewing the basics of probability theory, the fundamental assumption of Statistical Mechanics, "principle of equal a priori probabilities," is introduced to construct statistical ensembles. The microscopic interpretation of entropy is explained so that the connection to thermodynamics becomes constructed.	英語で授業 Lecture is conducted in English. face-to-face
FJ12111	Statistical Physics II	1	1.0	3	FallC	Wed4, 5	3A407	Sano Nobuyuki	The fundamental concepts introduced in Statistical Physics I are applied to a few simple physical systems such as ideal gases. We derive the classical (Boltzmann) and quantum (Fermi-Dirac and Bose-Einstein) statistics from statistical ensembles. The fundamental principles underlying when extracting the maximum work from heat are clarified. Those principles are applied to simple systems such as (classical and quantum) ideal gas and conduction electrons in metals.	英語で授業 Lecture is conducted in English. face-to-face
FJ12121	Statistical Physics III	1	1.0	3	SprAB	Wed5	3A212	Sano Nobuyuki	Following "Statistical Physics I, II", the fundamental principles and various statistical ensembles in Statistical Mechanics are applied to some important phenomena encountered in physics, namely phase transition and Landau phenomenological theory, semiconductor statistics, and quasi- Fermi potentials. A brief introduction to nonequilibrium statistical mechanics, namely, kinetic theory of ideal gas, linear response, and Boltzmann transport theory, is also explained.	英語で授業 Lecture is conducted in English. face-to-face

-	1					1	1		1	1
Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ12231	Quantum Mechanics I	1	1.0	3	FallA	Fri4, 5	3A213	Islam Monirul Muhammad	After a brief historical review, we will cover the basics of quantum theory from the perspective of wave mechanics. This includes a discussion of the wavefunction, the probability interpretation, operators, and the Schrödinger equation. We will then consider simple one-dimensional scattering and bound state problems. Next, we will cover the mathematical foundations needed to do quantum mechanics from a more modern perspective. We will review the necessary elements of matrix mechanics and linear algebra, such as finding eigenvalues and eigenvectors, computing the trace of a matrix, and finding out if a matrix is Hermitian or unitary. We will then cover Dirac notation and Hilbert spaces. The postulates of quantum mechanics will then be formalized and illustrated with examples.	For students enrolled in 2020 or later. Lecture is conducted in English. face-to-face
FJ12241	Quantum Mechanics II	1	1.0	3	FallBC	Fri4	3A213	Islam Monirul Muhammad	We will discuss the mathematical foundations of quantum theory with three important cases: angular momentum and spin, the harmonic oscillator, and an introduction to the physics of the hydrogen atom. Other topics covered include the density operator, the Bloch vector, and two-state systems.	For students enrolled in 2020 or later Lecture is conducted in English. face-to-face
FJ12251	Quantum Mechanics III	1	1.0	3	SprAB	Thu5	3A305	Islam Monirul Muhammad	We will study advanced topics from non- relativistic quantum theory such as scattering, identical particles, addition of angular momentum, higher Z atoms, and the WKB approximation.	Not open in 2022. For students enrolled in 2020 or later. Lecture is conducted in English. face-to-face
FJ12301	Advanced Electromagnetism I	1	1. 0	3	FallA	Fri1, 2	3A408	Fujioka Jun	This course introduces the fundamental concept of electromagnetic field and the Maxwell's equations. First, the fundamental laws of electromagnetic field in vacuum is explained and Maxwell's equation is derived. Next, the application of Maxwell's equation to the static electric/magnetic field is described.	Lecture is conducted in English. face-to-face Identical to OAJG041
FJ12311	Advanced Electromagnetism II	1	1.0	3	FallB	Thu4, 5	3Z107	JUNG Mincherl	Time-varying/time-harmonic electromagnetic fields and electrical properties of matter based on Maxwell's equations will be studied. Topics include: variable forms of Maxwell's eq., dielectrics/magnetics- polarization/magnetization- permittivity/permeability, etc.	Lecture is conducted in English. face-to-face Identical to OAJG042
FJ12321	Advanced Electromagnetism III	1	1.0	3	FallC	Thu1, 2	3Z107	JUNG Mincherl	Wave equation, propagation, polarization, reflection, transmission, radiation, and scattering will be studied. Topics include: variable formed wave eq., transverse electromagnetic modes (in Lossy media), linear/circular polarization, different incidence issues in Lossy media with multiple interfaces, electromagnetic theorems and principles, etc.	Lecture is conducted in English. face-to-face Identical to OAJG043
FJ12401	Solid State Physics I	1	1. 0	4	FallAB	Mon4	3Z107	Kojima Seiji	We learn fundamental knowledge of solid state physics, i.e. Crystal, structure, diffraction, reciprocal, lattice, Brillouin zone, ionic crystals, elastic constants.	Lecture is conducted in English. face-to-face Identical to OAJGO61
FJ12411	Solid State Physics II	1	1.0	4	FallC	Mon/Fri 4	3Z108	Kojima Seiji	We learn fundamental knowledge of solid state physics, i.e. crystal structure, wave diffraction and reciprocal lattice, thermal motion of atoms in crystal, electronic states in crystal. The thermal properties, transport phenomena, phase transitions and so on, in solids, will be discussed for understanding of advanced contents of materials science.	Lecture is conducted in English. face-to-face Identical to OAJG062
FJ12421	Solid State Physics III	1	1.0	4	SprBC	Mon4	3B304	Kojima Seiji	We learn fundamental knowledge of solid state physics, i.e. band structure, semiconductor crystals, Fermi surfaces, metals.	Not open in 2022 Lecture is conducted in English. face-to-face Identical to OAJG063

Course Number	Course Name	Instr uctio nal Type	Credit s	stand ard regis trati on year	Term	Meeting Days,Per iod etc.	Classro om	Instructor	Course Overview	Remarks
FJ15011	Control Systems I	1	2. 0	3	FallAB	Wed3, 4	3B301	Date Hisashi	This course introduces the control theory for linear systems based on state-space modeling. It covers the notion of stability, controllability, and observability, followed by the design of state feedback and observer. It also briefly covers the notion of frequency- domain techniques.	Lecture is conducted in English. face-to- face(partially online)
FJ15021	Control Systems II	1	2.0	3	SprAB	Wed3, 4	3B301	Mochiyama Hiromi	This course introduces the feedback control theory for linear dynamical systems. First, system modeling is considered in frequency, Laplace, and time domains with the notions of frequency transfer function, transfer function, and impulse response. Then, the pros and cons of feedback control are explained in comparison with feedforward control. Finally, control system design is also treated for stabilization as well as better steady-state and transient performances.	Lecture is conducted in English. face-to-face Hybrid (face-to-face and online(synchronous)) . The recorded course movies will also be available for later viewing.
FJ16011	Fluid Dynamics	1	1.0	3	FallAB	Mon2		Yokota Shigeru	This course covers the principal concepts and methods of fluid dynamics. Topics include basic laws of fluids, analysis of irrotational flow and vortex, introduction to compressible flows and viscos flows.	Lecture is conducted in English. Online (Asynchronous) This course cannot be taken by students who have already taken Fluid Dynamics I.
FJ16021	Mechanics of Materials	1	1.0	3	FallAB	Thu2	3B204	Matsushima Takashi	The course describes the basics of continuum mechanics for solid including the analyses of stress and strain, linear elasticity as the simplest the constitutive model, and the yield criterion.	in English. face-to-face.
FJ16031	Energy Engineering	1	1.0	3	SprC	Tue1, 2	3A212	Aki Hirohisa	This course introduces energy-related technologies and issues from an engineering perspective. Energy systems and energy issues is explained first, followed by an overview of some elemental technologies. The basic disciplines of energy include electrical engineering and mechanical engineering, but many more advanced disciplines are involved, such as semiconductor engineering, materials engineering, power engineering, and electrochemistry. In addition, an understanding of systems engineering and information engineering is required for actual operation. Each of the five instructors will discuss one topic such as renewable energy and provide commentary.	Lecture is conducted in English.