Japanese

Research News

Technology/Materials

Deriving the Fundamental Limit of Heat Current in Quantum Mechanical Many-Particle Systems

image picture Image by Olha Yefimova/Shutterstock

Researchers from the University of Tsukuba have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.

Tsukuba, Japan—Over the past few years, research has been conducted on quantum technologies that exploit the quantum mechanical properties of microscopic entities. Quantum thermodynamics is a notable field in this domain. Within this field, quantum heat engines and quantum batteries, leveraging quantum characteristics, have been theoretically studied and practically tested. A critical indicator of the performance of such devices is the magnitude of heat current (heat transferred per unit time) flowing from the ambient environment to the quantum system as the system's size increases. However, the fundamental limit of the heat current flowing into such an ensemble of quantum systems remains undefined.


In this study, the researchers mathematically derived a novel inequality that defines the limit of the heat current flowing into a quantum system. Based on this inequality, they demonstrated that as a quantum system incorporates increasing number of particles, the heat current flowing into the system does not rise faster than a cubic function of the particle count. Furthermore, they derived an inequality applicable under more realistic conditions wherein the heat current does not rise faster than a square function of the particle count. Interestingly, the phenomenon related to energy radiation termed as "superradiance" was identified as the most efficient mechanism for achieving the fundamental heat current limit derived in this study.


While earlier research has hinted at nonlinear heat current surge with repect to the particle count in various specific scenarios, this study is pioneering in pinpointing a fundamental limit that is universally applicable. Notably, these findings could be instrumental for cooling engines associated with quantum devices and other similar applications.


###
This work was supported from JSPS KAKENHI (No. 20H01827), JST's Moonshot R&D (No. JPMJMS2061) and JST PRESTO (No. JP-MJPR1919), Japan.



Original Paper

Title of original paper:
Universal Scaling Bounds on a Quantum Heat Current
Journal:
Physical Review Letters
DOI:
10.1103/PhysRevLett.131.090401

Correspondence

Professor TOKURA Yasuhiro
Institute of Pure and Applied Science, University of Tsukuba


Related Link

Institute of Pure and Applied Sciences




Celebrating the 151st 50th Anniversary of the University of Tsukuba
Celebrating the 151st 50th Anniversary of the University of Tsukuba